Independent Domination in Cubic Graphs

نویسندگان

  • Paul Dorbec
  • Michael A. Henning
  • Mickaël Montassier
  • Justin Southey
چکیده

A set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. The independent domination number of G, denoted by i(G), is the minimum cardinality of an independent dominating set. In this paper, we show that if G �= C5 ✷K2 is a connected cubic graph of order n that does not have a subgraph isomorphic to K2,3, then i(G) ≤ 3n/8. As a consequence of our main result, we deduce Reed’s important result [Combin. Probab. Comput. 5 (1996), 277–295] that if G is a cubic graph of order n, then γ(G) ≤ 3n/8, where γ(G) denotes the domination number of G.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domination parameters of Cayley graphs of some groups

‎In this paper‎, ‎we investigate domination number‎, ‎$gamma$‎, ‎as well‎ ‎as signed domination number‎, ‎$gamma_{_S}$‎, ‎of all cubic Cayley‎ ‎graphs of cyclic and quaternion groups‎. ‎In addition‎, ‎we show that‎ ‎the domination and signed domination numbers of cubic graphs depend‎ on each other‎.

متن کامل

Total domination in cubic Knodel graphs

A subset D of vertices of a graph G is a dominating set if for each u ∈ V (G) \ D, u is adjacent to somevertex v ∈ D. The domination number, γ(G) ofG, is the minimum cardinality of a dominating set of G. A setD ⊆ V (G) is a total dominating set if for eachu ∈ V (G), u is adjacent to some vertex v ∈ D. Thetotal domination number, γt (G) of G, is theminimum cardinality of a total dominating set o...

متن کامل

Cubic Graphs with Large Ratio of Independent Domination Number to Domination Number

A dominating set in a graph G is a set S of vertices such that every vertex outside S has a neighbor in S; the domination number γ(G) is the minimum size of such a set. The independent domination number, written i(G), is the minimum size of a dominating set that also induces no edges. Henning and Southey conjectured that if G is a connected cubic graph with sufficiently many vertices, then i(G)...

متن کامل

The Domination Parameters of Cubic Graphs

Let ir(G), γ(G), i(G), β0(G), Γ(G) and IR(G) be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any integers k1, k2, k3, k4, k5 there exists a cubic graph G satisfying the following conditions: γ(G)−ir(G) ≥ k1, i(G)−...

متن کامل

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

On independent domination numbers of grid and toroidal grid directed graphs

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2015